之前李明智说的世界近代三大数学难题分别是指四色猜想、费马大定理和哥德巴赫猜想。
其中的四色猜想又被称为四色定理、四色问题,最先是由一位名叫古德里·格思里的瑛国大学生于1852年提出来的,其内容是“如果在平面上划出一些邻接的有限区域,那么可以用四种颜色来给这些区域染色,使得每两个邻接区域染的颜色都不一样。”
四色问题被提出距今已有164年,仍未被解决。
而费马大定理,则大约是在1637年左右由珐国学者费马在阅读diophatus《算术》拉丁文译本时提出的,他曾在该书的第11卷第8命题旁写道:“将一个立方数分成两个立方数之和,或一个四次幂分成两个四次幂之和,或者一般地将一个高于二次的幂分成两个同次幂之和,这是不可能的。关于此,我确信已发现了一种美妙的证法,可惜这里空白的地方太小,写不下。”
费马在书里写的这段话的最后一句话,被无数后人所引用。
费马大定理在1994年被解决,在这三百多年时间里被无数对该问题感兴趣的学者们不断钻研,从提出到被彻底解决足足花了357年。
而哥德巴赫猜想则是哥德巴赫在1742年给欧拉的信中提出的,至今已有274年,哥德巴赫提出的猜想原始内容是“任一大于2的整数都可写成三个质数之和。”
哥德巴赫之所以会在给欧拉的信中提到这个猜想,是因为他自己无法证明这个猜想,于便想写信请教当时的学术天才欧拉帮忙证明,欧拉15岁获得学士学位,16岁获得硕士学位,24岁接替丹尼尔·伯努利成为物理教授,说他是天才绝对没有夸张。
这位丹尼尔·伯努利,便是提出伯努利原理的提出者,伯努利原理的表述式被称为伯努利方程,但凡是涉及流体力学都会学到这个方程。
哥德巴赫全名克里斯蒂安·哥德巴赫,是普鲁士人,曾担任过俄国沙皇彼得二世的老师,由于经常访问欧洲,便认识了莱布尼茨、欧拉和伯努利等人,并与他们长期保持通信,这才会有给欧欧拉写信让帮忙证明这件事。
但就是欧拉这样一位天才,却是同样是到死都没能证明出哥德巴赫提出的这个猜想。
当初哥德巴赫提出这个猜想的时候,之所以会说是“任一大于2的整数都可写成三个质数之和”,那是因为在当时的数学界中,人们还认为1也是素数。
但现在的数学界已经不认为1也是素数了,所以哥德巴赫原来的猜想现在变成了“任一大于5的整数都可写成三个质数之和。”
欧拉在看到哥德巴赫寄给他的信中提到的这个猜想之后,虽然他不知道该如何证明这个猜想,但却对这个猜想进行了改良。
他在回信中写道“我虽然现在还不知道该如何证明这个猜想,但我觉得这个猜想可以改成:任一大于2的偶数可以写成两个素数之和,比如4=2+2,6=3+3,8=3+5……”。
欧拉的这个改良,可以说是进行史诗级加强了。
欧拉对哥德巴赫提出的猜想进行加强后的版本,便是现在最常见到的版本。
不过,两百多年来世界各地的数学家们对于哥德巴赫猜想的证明和对费马大定理的证明一样,都是通过接力证明,就像是一条没有木板只有两根吊绳的吊桥。