第94章 芯片工艺(2 / 2)

gu903();然后进入蚀刻阶段。

将硅片浸入内含蚀刻药剂的特制刻蚀槽内,可以溶解掉暴露出来的硅片部分,而剩下的光刻胶保护着不需要蚀刻的部分。

期间施加超声振动,加速去除硅片表面附着的杂质,防止刻蚀产物在硅片表面停留造成刻蚀不均匀。

下一步是清除光刻胶。

通过氧等离子体对光刻胶进行灰化处理,去除所有光刻胶。

此时就可以完成第一层设计好的电路图案。

重复第6-8步,由于现在的晶体管已经3dfi设计,不可能一次性就能制作出所需的图形,需要重复第6-8步进行处理,中间还会有各种成膜工艺(绝缘膜、金属膜)参与到其中,以获得最终的3d晶体管。

接下来是离子注入阶段。

在特定的区域,有意识地导入特定杂质的过程称为“杂质扩散”。

通过杂质扩散可以控制导电类型(p结、n结)之外,还可以用来控制杂质浓度以及分布。

现在一般采用离子注入法进行杂质扩散,在离子注入机中,将需要掺杂的导电性杂质导入电弧室,通过放电使其离子化,经过电场加速后,将数十到数千kev能量的离子束由硅片表面注入。

离子注入完毕后的硅片还需要经过热处理,一方面利用热扩散原理进一步将杂质“压入”硅中,另一方面恢复晶格完整性,活化杂质电气特性。

离子注入法具有加工温度低,可均匀、大面积注入杂质,易于控制等优点,因此成为超大规模集成电路中不可缺少的工艺。

再次清除光刻胶。完成离子注入后,可以清除掉选择性掺杂残留下来的光刻胶掩模。

此时,单晶硅内部一小部分硅原子已经被替换成“杂质”元素,从而产生可自由电子或空穴。

绝缘层处理,此时晶体管雏形已经基本完成,利用气相沉积法,在硅晶圆表面全面地沉积一层氧化硅膜,形成绝缘层。

同样利用光刻掩模技术在层间绝缘膜上开孔,以便引出导体电极。

沉淀铜层,利用溅射沉积法,在硅片整个表面上沉积布线用的铜层,继续使用光刻掩模技术对铜层进行雕刻,形成场效应管的源极、漏极、栅极。

最后在整个硅片表面沉积一层绝缘层以保护晶体管。

构建晶体管之间连接电路。

经过漫长的工艺,数以十亿计的晶体管已经制作完成。

剩下的就是如何将这些晶体管连接起来的问题了。

同样是先形成一层铜层,然后光刻掩模、蚀刻开孔等精细操作,再沉积下一层铜层。

这样的工序反复进行多次,这要视乎芯片的晶体管规模、复制程度而定。

最终形成极其复杂的多层连接电路网络。

由于现在ic包含各种精细化的元件以及庞大的互联电路,结构非常复杂,实际电路层数已经高达30层,表面各种凹凸不平越来越多,高低差异很大,因此开发出p化学机械抛光技术。

每完成一层电路就进行p磨平。

另外为了顺利完成多层cu立体化布线,开发出大马士革法新的布线方式,镀上阻挡金属层后,整体溅镀cu膜,再利用p将布线之外的cu和阻挡金属层去除干净,形成所需布线。

芯片电路到此已经基本完成,其中经历几百道不同工艺加工,而且全部都是基于精细化操作,任何一个地方出错都会导致整片硅片报废,在100多平方毫米的硅片上制造出数十亿个晶体管,是人类有文明以来的所有智慧的结晶。

而弄得这么复杂,几百道工序下来,不过是为了在硅片上面,雕刻纹路,注入导电杂质,形成开关。

gu903();