作者君在作品相关中其实已经解释过这个问题。
不过仍然有人质疑。
那么作者君在此列出相关参考文献中的一篇开源论文。
以下是文章内容:
long-tertegrationsandstabilityofparyorbitsoursorsyste
abstract
wepresenttheresultsofverylong-ternuricaltegrationsofparyorbitalotionsover109-yrti-spanscdgallnepsaquickspectionofournuricaldatashowsthattheparyotion,atleastoursipledynaicalodel,seestobequitestableevenoverthisverylongti-spanacloserlookatthelowest-frequencyosciltionsgalow-passfiltershowsthepotentiallydiffivecharacterofterrestrialparyotion,especiallythatofrcurythebehaviouroftheeentricityofrcuryourtegrationsisqualitativelysiirtotheresultsfrojacquesskar&039;ssecurperturbationtheory(egeax~035over~±4gyr)however,therearenoapparentsecurcreasesofeentricityorclationanyorbitalelentsoftheps,whichayberevealedbystilllonger-ternuricaltegrationswehavealsoperfordaupleoftrialtegrationscdgotionsoftheouterfivepsoverthedurationof±5x1010yrtheresultdicatesthatthethreeajorresonancestheneptune–ptosystehavebeenataedoverthe1011-yrti-span
1troduction
11defitionoftheproble
thequestionofthestabilityofoursorsystehasbeendebatedoverseveralhundredyears,scetheeraofnewtontheproblehasattractedanyfaoatheaticiansovertheyearsandhaspyedacentralrolethedevelopntofnon-leardynaicsandchaostheoryhowever,wedonotyethaveadefiteanswertothequestionofwhetheroursorsysteisstableornotthisispartlyaresultofthefactthatthedefitionoftheter‘stability’isvaguewhenitisedretiontotheprobleofparyotionthesorsysteactuallyitisnoteasytogiveaclear,rigoroandphysicallyangfuldefitionofthestabilityofoursorsyste
aonganydefitionsofstability,hereweadoptthehilldefition(gdan1993):actuallythisisnotadefitionofstability,butofstabilitywedefeasysteasbegunstablewhenacloseenunterourssowherethesyste,startgfroacertaitialnfiguration(chabers,wetherill≈ap;ap;ap;boss1996;ito≈ap;ap;ap;tanikawa1999)asysteisdefedasexperiencgacloseenunterwhenobodiesapproachoneanotherwithanareaofthergerhillradiotherwisethesysteisdefedasbegstablehenceforwardwestatethatourparysysteisdynaicallystableifnocloseenunterhappensdurgtheageofoursorsyste,about±5gyrcidentally,thisdefitionayberepcedbyonewhichanourrenceofanyorbitalcrossgbeeeneitherofapairofpstakespcethisisbecaeweknowfroexperiencethatanorbitalcrossgisverylikelytoleadtoacloseenunterparyandproarysystes(yoshaga,kokubo≈ap;ap;ap;ako1999)ofursethisstatentcannotbesiplyappliedtosysteswithstableorbitalresonancessuchastheneptune–ptosyste
12previostudiesandaisofthisresearch
additiontothevaguenessofthenceptofstability,thepsoursorsysteshowacharactertypicalofdynaicalchaos(ssan≈ap;ap;ap;wisdo1988,1992)thecaeofthischaoticbehaviourisnowpartlyunderstoodasbegaresultofresonanceoverppg(urray≈ap;ap;ap;holan1999;lecar,frankl≈ap;ap;ap;holan2001)however,itwouldrequiretegratgoveranensebleofparysystescdgallnepsforaperiodvergseveral10gyrtothoroughlyunderstandthelong-terevotionofparyorbits,scechaoticdynaicalsystesarecharacterizedbytheirstrongdependenceonitialnditions
frothatpotofview,anyofthepreviolong-ternuricaltegrationscdedonlytheouterfiveps(ssan≈ap;ap;ap;wisdo1988;koshita≈ap;ap;ap;nakai1996)thisisbecaetheorbitalperiodsoftheouterpsaresouchlongerthanthoseofthenerfourpsthatitisucheasiertofollowthesysteforagiventegrationperiodatpresent,thelongestnuricaltegrationspublishedjournalsarethoseofduncan≈ap;ap;ap;lissauer(1998)althoughtheiratargetwastheeffectofpost-a-sequencesorasslossonthestabilityofparyorbits,theyperfordanytegrationsvergupto~1011yroftheorbitalotionsofthefourjovianpstheitialorbitalelentsandassesofpsarethesaasthoseofoursorsysteduncan≈ap;ap;ap;lissauer&039;spaper,buttheydecreasetheassofthesungraduallytheirnuricalexperintsthisisbecaetheynsidertheeffectofpost-a-sequencesorasslossthepapernsequently,theyfoundthatthecrossgti-scaleofparyorbits,whichcanbeatypicaldicatorofthestabilityti-scale,isquitesensitivetotherateofassdecreaseofthesunwhentheassofthesunisclosetoitspresentvae,thejovianpsreastableover1010yr,orperhapslongerduncan≈ap;ap;ap;lissaueralsoperfordfoursiirexperintsontheorbitalotionofsevenps(ventoneptune),whichveraspanof~109yrtheirexperintsonthesevenpsarenotyetprehensive,butitseesthattheterrestrialpsalsoreastabledurgthetegrationperiod,atagalostregurosciltions
ontheotherhand,hisauratesei-analyticalsecurperturbationtheory(skar1988),skarfdsthatrgeandirregurvariationscanappeartheeentricitiesandclationsoftheterrestrialps,especiallyofrcuryandarsonati-scaleofseveral109yr(skar1996)theresultsofskar&039;ssecurperturbationtheoryshouldbenfirdandvestigatedbyfullynuricaltegrations
thispaperwepresentpreliaryresultsofsixlong-ternuricaltegrationsonallneparyorbits,vergaspanofseveral109yr,andofoothertegrationsvergaspanof±5x1010yrthetotalepsedtiforalltegrationsisorethan5yr,gseveraldedicatedpcsandworkstationsoneofthefundantalncsionsofourlong-tertegrationsisthatsorsysteparyotionseestobestabletersofthehillstabilityntionedabove,atleastoverati-spanof±4gyractually,ournuricaltegrationsthesystewasfarorestablethanwhatisdefedbythehillstabilitycriterion:notonlydidnocloseenunterhappendurgthetegrationperiod,butalsoalltheparyorbitalelentshavebeennfedanarrowregionbothtiandfrequencydoa,thoughparyotionsarestochasticscethepurposeofthispaperistoexhibitandoverviewtheresultsofourlong-ternuricaltegrations,weshowtypicalexaplefiguresasevidenceoftheverylong-terstabilityofsorsysteparyotionforreaderswhohaveorespecificanddeeperterestsournuricalresults,wehavepreparedawebpage(aess),whereweshowraworbitalelents,theirlow-passfilteredresults,variationofdeunayelentsandangurontudeficit,andresultsofoursipleti–frequencyanalysisonallofourtegrations
section2webrieflyexpourdynaicalodel,nuricalthodanditialnditionsedourtegrationssection3isdevotedtoadescriptionofthequickresultsofthenuricaltegrationsverylong-terstabilityofsorsysteparyotionisapparentbothparypositionsandorbitalelentsaroughestiationofnuricalerrorsisalsogivensection4goesontoadiscsionofthelongest-tervariationofparyorbitsgalow-passfilterandcdesadiscsionofangurontudeficitsection5,wepresentasetofnuricaltegrationsfortheouterfivepsthatspans±5x1010yrsection6wealsodiscsthelong-terstabilityoftheparyotionanditspossiblecae
2descriptionofthenuricaltegrations
(本部分涉及比较复杂的积分计算,作者君就不贴上来了,贴上来了起点也不一定能成功显示。)
23nuricalthod
weutilizeasend-orderwisdo–holansyplecticapasourategrationthod(wisdo≈ap;ap;ap;holan1991;koshita,yoshida≈ap;ap;ap;nakai1991)withaspecialstart-upproceduretoreducethetruncationerrorofanglevariables,‘warstart’(saha≈ap;ap;ap;treae1992,1994)
thestepsizeforthenuricaltegrationsis8dthroughoutalltegrationsoftheneps(n±1,2,3),whichisabout1/11oftheorbitalperiodofthenerostp(rcury)asforthedeterationofstepsize,wepartlyfollowtheprevionuricaltegrationofallnepsssan≈ap;ap;ap;wisdo(1988,72d)andsaha≈ap;ap;ap;treae(1994,225/32d)weroundedthedecialpartofthetheirstepsizesto8toakethestepsizeaultipleof2ordertoreducetheauutionofround-offerrortheputationprocessesretiontothis,wisdo≈ap;ap;ap;holan(1991)perfordnuricaltegrationsoftheouterfiveparyorbitsgthesyplecticapwithastepsizeof400d,1/1083oftheorbitalperiodofjupitertheirresultseestobeaurateenough,whichpartlyjtifiesourthodofdetergthestepsizehowever,scetheeentricityofjupiter(~005)isuchsallerthanthatofrcury(~02),weneedsocarewhenweparethesetegrationssiplytersofstepsizes
thetegrationoftheouterfiveps(f±),wefixedthestepsizeat400d
weadoptgas&039;fandgfunctionsthesyplecticaptogetherwiththethird-orderhalleythod(danby1992)asasolverforkeplerequationsthenuberofaxiuiterationswesethalley&039;sthodis15,buttheyneverreachedtheaxiuanyofourtegrations
thetervalofthedataoutputis200000d(~547yr)forthecalcutionsofallneps(n±1,2,3),andabout8000000d(~21903yr)forthetegrationoftheouterfiveps(f±)
althoughnooutputfiltergwasdonewhenthenuricaltegrationswereprocess,weappliedalow-passfiltertotheraworbitaldataafterwehadpletedallthecalcutionsseesection41fororedetail
24errorestiation
241retiveerrorstotalenergyandangurontu
aordgtooneofthebasicpropertiesofsyplectictegrators,whichnservethephysicallynservativequantitieswell(totalorbitalenergyandangurontu),ourlong-ternuricaltegrationsseetohavebeenperfordwithverysallerrorstheaveragedretiveerrorsoftotalenergy(~10?9)andoftotalangurontu(~10?11)havereaednearlynstantthroughoutthetegrationperiod(fig1)thespecialstartupprocedure,warstart,wouldhavereducedtheaveragedretiveerrortotalenergybyaboutoneorderofagnitudeorore
retivenuricalerrorofthetotalangurontuδa/a0andthetotalenergyδe/e0ournuricaltegrationsn±1,2,3,whereδeandδaaretheabsotechangeofthetotalenergyandtotalangurontu,respectively,ande0anda0aretheiritialvaesthehorizontalunitisgyr
notethatdifferentoperatgsystes,differentatheaticallibraries,anddifferenthardwarearchitecturesresultdifferentnuricalerrors,throughthevariationsround-offerrorhandlgandnuricalalgorithstheupperpaneloffig1,wecanregnizethissituationthesecurnuricalerrorthetotalangurontu,whichshouldberigorolypreserveduptoache-eprecision
242errorparylongitudes
scethesyplecticapspreservetotalenergyandtotalangurontuofn-bodydynaicalsystesherentlywell,thedegreeoftheirpreservationaynotbeagoodasureoftheauracyofnuricaltegrations,especiallyasaasureofthepositionalerrorofps,ietheerrorparylongitudestoestiatethenuricalerrortheparylongitudes,weperfordthefollogproceduresweparedtheresultofouralong-tertegrationswithsotesttegrations,whichspanuchshorterperiodsbutwithuchhigherauracythantheategrationsforthispurpose,weperfordauchoreauratetegrationwithastepsizeof0125d(1/64oftheategrations)spanng3x105yr,startgwiththesaitialnditionsasthen?1tegrationwensiderthatthistesttegrationprovideswitha‘pseudo-true’sotionofparyorbitalevotionnext,weparethetesttegrationwiththeategration,n?1fortheperiodof3x105yr,weseeadifferenceananoaliesoftheearthbeeentheotegrationsof~052°(thecaseofthen?1tegration)thisdifferencecanbeextrapotedtothevae~8700°,about25rotationsofearthafter5gyr,scetheerroroflongitudescreaseslearlywithtithesyplecticapsiirly,thelongitudeerrorofptocanbeestiatedas~12°thisvaeforptoisuchbetterthantheresultkoshita≈ap;ap;ap;nakai(1996)wherethedifferenceisestiatedas~60°
3nuricalresults–ignceattherawdata
thissectionwebrieflyreviewthelong-terstabilityofparyorbitalotionthroughsosnapshotsofrawnuricaldatatheorbitalotionofpsdicateslong-terstabilityallofournuricaltegrations:noorbitalcrossgsnorcloseenuntersbeeenanypairofpstookpce
31generaldescriptionofthestabilityofparyorbits
first,webrieflylookatthegeneralcharacterofthelong-terstabilityofparyorbitsourterestherefocesparticurlyonthenerfourterrestrialpsforwhichtheorbitalti-scalesareuchshorterthanthoseoftheouterfivepsaswecanseeclearlyfrothepnarorbitalnfigurationsshownfigs2and3,orbitalpositionsoftheterrestrialpsdifferlittlebeeentheitialandfalpartofeachnuricaltegration,whichspansseveralgyrthesolidlesdenotgthepresentorbitsofthepsliealostwiththeswarofdotseventhefalpartoftegrations(b)and(d)thisdicatesthatthroughouttheentiretegrationperiodthealostregurvariationsofparyorbitalotionreanearlythesaastheyareatpresent
verticalviewofthefournerparyorbits(frothez-axisdirection)attheitialandfalpartsofthetegrationsn±1theaxesunitsareauthexy-pneissettothevariantpneofsorsystetotalangurontu(a)theitialpartofn+1(t=0to00547x109yr)(b)thefalpartofn+1(t=49339x108to49886x109yr)(c)theitialpartofn?1(t=0to?00547x109yr)(d)thefalpartofn?1(t=?39180x109to?39727x109yr)eachpanel,atotalof23684potsareplottedwithantervalofabout2190yrover547x107yrsolidleseachpaneldenotethepresentorbitsofthefourterrestrialps(takenfrode245)